Python小练习:追踪导弹仿真
Published on Mar 02, 2013
Python小练习:追踪导弹仿真
警告:浏览器可能不支持html嵌入标签,那么很抱歉什么视频也看不到。建议使用最新稳定版的firefox/chromium
仿真的时候面向对象会很方便。
缘起
某天终于没有雾霾的时候,我在操场上追赶正在散步的父亲……然后,我就想多了= =跟踪导弹是个什么轨迹呢?
仿真
首先把问题简化下,如果从圆心开始追赶圆上匀速运动的物体,是什么情况。
我先自己设法用微分笔算了算,发现实在搞不定。
上网查查导弹问题看到一些简单的直线问题,都涉及一堆微分方程和欧拉法迭代啥的……
干脆自己仿真下吧。这是最初的版本,完全没有面向对象概念。
前半部分调整图像的代码完全可以不看,从while循环开始即可。
import matplotlib.pyplot as plt import numpy as np tolerance = 1e-1 radius = np.pi v_o = 20 x_o, y_o = 0, radius x_m, y_m = -radius, 0 v_m = 5 plt.figure(figsize=(10, 10), dpi=80) plt.title(" missile flight simulator ", fontsize=40) plt.xlim(-4, 4) plt.ylim(-4, 4) #plt.xticks([]) #plt.yticks([]) # set spines ax = plt.gca() ax.spines['right'].set_color('none') ax.spines['top'].set_color('none') ax.xaxis.set_ticks_position('bottom') ax.spines['bottom'].set_position(('data', 0)) ax.yaxis.set_ticks_position('left') ax.spines['left'].set_position(('data', 0)) plt.xticks([-np.pi, -np.pi / 2, 0, np.pi / 2, np.pi], [r'$-\pi$', r'$-\pi/2$', r'$0$', r'$+\pi/2$', r'$+\pi$']) plt.yticks([-np.pi, -np.pi / 2, 0, np.pi / 2, np.pi], [r'$-\pi$', r'$-\pi/2$', r'$0$', r'$+\pi/2$', r'$+\pi$']) # Note object and missile plt.annotate('object start point', xy=(x_o, y_o), xycoords='data', xytext=(+15, +15), textcoords='offset points', fontsize=12, arrowprops=dict(arrowstyle="->", connectionstyle="arc3,rad=.2")) plt.annotate('missile start point', xy=(x_m, y_m), xycoords='data', xytext=(+15, +15), textcoords='offset points', fontsize=12, arrowprops=dict(arrowstyle="->", connectionstyle="arc3,rad=.2")) # alpha labels for label in ax.get_xticklabels() + ax.get_yticklabels(): label.set_fontsize(16) label.set_bbox(dict(facecolor='white', edgecolor='None', alpha=0.65)) while True: if x_o == 0 and y_o == radius: beta = 0 elif x_o == 0 and y_o == radius: beta = np.pi elif x_o < 0: beta = np.pi / 2 * 3 - np.arctan(y_o / x_o) else: beta = np.pi / 2 - np.arctan(y_o / x_o) if np.sqrt((x_o - x_m) ** 2 + (y_o - y_m) ** 2) < tolerance: print "collision" plt.plot(x_m, y_m, 'o') plt.annotate('crash point', xy=(x_m, y_m), xycoords='data', xytext=(+15, +15), textcoords='offset points', fontsize=12, arrowprops=dict(arrowstyle="->", connectionstyle="arc3,rad=.2")) plt.pause(0.1) break elif x_o < x_m: alpha = np.pi + np.arctan((y_o - y_m) / (x_o - x_m)) elif x_o == x_m: alpha = np.pi / 2 else: alpha = np.arctan((y_o - y_m) / (x_o - x_m)) x_o = radius * np.sin(beta + v_o * 0.01 / np.pi / 2) y_o = radius * np.cos(beta + v_o * 0.01 / np.pi / 2) x_m = x_m + v_m * 0.01 * np.cos(alpha) y_m = y_m + v_m * 0.01 * np.sin(alpha) #print alpha, beta plt.plot(x_o, y_o, 'r.', alpha=.5) plt.plot(x_m, y_m, 'bx', alpha=.5) plt.legend(("target", "missile"), loc="upper left", prop={'size': 12}) plt.pause(0.1)
我发现如果我速度够慢,未必追得上,甚至连被追踪物的轨道都不会进入……这挺出乎意料的,本来以为一定追的上
回到最初的问题,我从我的位置上追我父亲(好傻,都不知道估计下位置……)
面向对象
问题来了,如果我要仿真不只一个追踪导弹,比如还想仿真一个拦截导弹呢?
拦截失败演示
还可以用上面的方法不断扩充代码,每个对象写重复的代码。
但这时面向对象就能发挥威力,减少代码重用了。
以下是对四蜗牛聚合线问题的仿真。
import matplotlib.pyplot as plt import numpy as np tolerance = 1e-1 radius = np.pi # missile 1 x_m1, y_m1 = -np.pi, 0 v_m1 = 5 # missile 2 x_m2, y_m2 = 0, np.pi v_m2 = v_m1 # missile 3 x_m3, y_m3 = np.pi, 0 v_m3 = v_m1 # missile 4 x_m4, y_m4 = 0, -np.pi v_m4 = v_m1 plt.figure(figsize=(10, 10), dpi=80) plt.title(" missile flight simulator ", fontsize=40) plt.xlim(-4, 4) plt.ylim(-4, 4) #plt.xticks([]) #plt.yticks([]) # set spines ax = plt.gca() ax.spines['right'].set_color('none') ax.spines['top'].set_color('none') ax.xaxis.set_ticks_position('bottom') ax.spines['bottom'].set_position(('data', 0)) ax.yaxis.set_ticks_position('left') ax.spines['left'].set_position(('data', 0)) plt.xticks([-np.pi, -np.pi / 2, 0, np.pi / 2, np.pi], [r'$-\pi$', r'$-\pi/2$', r'$0$', r'$+\pi/2$', r'$+\pi$']) plt.yticks([-np.pi, -np.pi / 2, 0, np.pi / 2, np.pi], [r'$-\pi$', r'$-\pi/2$', r'$0$', r'$+\pi/2$', r'$+\pi$']) plt.annotate('missile start point', xy=(x_m1, y_m1), xycoords='data', xytext=(+15, +15), textcoords='offset points', fontsize=12, arrowprops=dict(arrowstyle="->", connectionstyle="arc3,rad=.2")) # alpha labels for label in ax.get_xticklabels() + ax.get_yticklabels(): label.set_fontsize(16) label.set_bbox(dict(facecolor='white', edgecolor='None', alpha=0.65)) class ob(object): """docstring for ob""" def __init__(self, x, y): self.x = x self.y = y class missile(ob): """docstring for missile""" def __init__(self, x, y): super(missile, self).__init__(x, y) def forward(self, v, target): """docstring for forward""" if self.x < target.x: alpha = np.arctan((target.y - self.y) / (target.x - self.x)) elif self.x > target.x: alpha = np.pi + np.arctan((target.y - self.y) / (target.x - self.x)) elif self.x == target.x and self.y < target.y: alpha = np.pi / 2 else: alpha = -np.pi / 2 self.x = self.x + v * 0.01 * np.cos(alpha) self.y = self.y + v * 0.01 * np.sin(alpha) return self.x, self.y def distance(self, target): """docstring for distance""" return np.sqrt((self.x - target.x) ** 2 + (self.y - target.y) ** 2) class target(ob): """docstring for target""" def __init__(self, x, y): super(target, self).__init__(x, y) def newposition(self, x, y): """docstring for newposition""" self.x = x self.y = y m1 = missile(x_m1, y_m1) m2 = missile(x_m2, y_m2) m3 = missile(x_m3, y_m3) m4 = missile(x_m4, y_m4) while True: if m1.distance(m2) < tolerance or m1.distance(m3) < tolerance or m1.distance(m4) < tolerance: print "collision" plt.plot(x_m1, y_m1, 'o') plt.annotate('crash point', xy=(x_m1, y_m1), xycoords='data', xytext=(+15, +15), textcoords='offset points', fontsize=12, arrowprops=dict(arrowstyle="->", connectionstyle="arc3,rad=.2")) plt.pause(0.1) plt.show() break elif m3.distance(m2) < tolerance or m3.distance(m4) < tolerance: print "collision" plt.plot(x_m3, y_m3, 'o') plt.annotate('crash point', xy=(x_m3, y_m3), xycoords='data', xytext=(+15, +15), textcoords='offset points', fontsize=12, arrowprops=dict(arrowstyle="->", connectionstyle="arc3,rad=.2")) plt.pause(0.1) plt.show break x_m1, y_m1 = m1.forward(v_m1, m2) x_m2, y_m2 = m2.forward(v_m2, m3) x_m3, y_m3 = m3.forward(v_m3, m4) x_m4, y_m4 = m4.forward(v_m4, m1) #print alpha, beta plt.plot(x_m1, y_m1, 'bx', alpha=.5) plt.plot(x_m2, y_m2, 'k*', alpha=.5) plt.plot(x_m3, y_m3, 'r.', alpha=.5) plt.plot(x_m4, y_m4, 'gp', alpha=.5) plt.legend(("missile1", "missile2", "missile3", "missile4"), loc="upper left", prop={'size': 12}) plt.pause(0.1)
总结
面向对象方法对仿真问题非常合适,能有效简化代码,做到DRY(Don't repeat yourself)。
搞着玩的,也许我该想想复试怎么办了……